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Abstract

The standard model of traffic flow used in the analysis of urban
traffic is the Wardrop equilibrium. The existence of traffic flows that
reduce costs for some travelers without increasing the costs for any
other travelers when compared to the equilibrium defines a General-
ized Braess Paradox. We provide a practical methodology for detect-
ing such flows and report the existence of such a flow in the Sioux
Falls study network.

Keywords Multicommodity Traffic, Noncooperative Equilibrium, Nonlinear
Programming, Braess Paradox.

1 Introduction

Traffic congestion is becoming a more and more pressing issue for society
and a major concern for urban planners. In 1968, Braess [6] identified the
possibility that more roads can make traffic worse. In this paper, we take
an “inverse” view, that is, that fewer roads, or more-restricted roads, can
make traffic better. Specifically, we look for situations in which the total
cost of congestion is reduced at negligible additional cost to any traveler.
We provide a methodology for identifying such situations and demonstrate
that the Sioux Falls study network is an example in which restricting traffic
on certain links leads to 33% lower travel times for some travelers while
increasing other travelers’ times by no more than a quarter of one percent.
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In urban road networks, individual travelers decide on their own travel
routes on the basis of factors such as time, cost, convenience. Since they are
not acting cooperatively, it is not surprising that these individually chosen
routes are not best from society’s point of view. In this paper we show
how to detect cases where redirecting traffic flows reduces the travel time
for some travelers while not increasing travel time for any travelers. Since
this redirection can be enforced by restricting access to certain links in the
network or by imposing tolls, it is possible to improve society’s traffic costs
while costs to other individual travelers are reduced or remain the same.

The standard model of traffic flow is that travelers distribute themselves
according to Wardrop’s user-equilibrium principle (See [12], [16]). This prin-
ciple states that all used paths between an origin-destination pair will have
the same cost, which is no more than the cost on any unused path. Cost
is measured as time or some combination of tolls, time, and other factors.
Braess [6] used this model to construct a seemingly paradoxical example in
which adding a link to a simple network results in a user-equilibrium distri-
bution of flows that is worse for all travelers than the network without the
added link. One can also view Braess’s network example with the added link
as an example in which a nonequilibrium flow (with no flow on the added
link) reduces costs for all travelers.

In a previous paper [9], the authors defined a Generalized Braess Paradox
to occur whenever there is an alternative distribution of flows which makes
some travelers better off and none worse off than in the Wardrop equilibrium
distribution. In game-theoretic terms, a Generalized Braess Paradox occurs
whenever the user equilibrium is not strongly Pareto optimal. In this paper
we show how to detect a Generalized Braess Paradox and report the detec-
tion of a Generalized Braess Paradox in the widely known Sioux Falls study
network. We thus demonstrate the feasibility of detecting opportunities in
which society can improve its total costs without increasing the cost to any
individual travelers. The procedure that we develop will also detect occur-
rences of the “classic” Braess Paradox, in which removing a link results in
improved travel cost.

This work is related to, but distinct from, work on finding system-optimal
flows in a network. A system-optimal flow in a traffic network minimizes
the sum of the costs of all travelers. A system-optimal flow is desirable
from society’s point of view because it minimizes consumption of resources
and production of pollution. The system-optimal flow is usually distinct
from the user-equilibrium flow, but typically will require some travelers to
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incur higher travel costs than in the equilibrium flow. Braess’s example is
one in which the system-optimal distribution demonstrates the existence of
a Generalized Braess Paradox. This, however, is unusual. In more usual
cases (See [9]), the system-optimal distribution makes some travelers worse
off than in the equilibrium distribution, even when a Generalized Braess
Paradox exists. Finding a distribution that demonstrates the existence of
a Generalized Braess Paradox is significantly more difficult than finding a
system-optimal distribution.

In [9], we showed that a Generalized Braess Paradox can be characterized
in terms of a mathematical program. In this paper, we use that characteriza-
tion to develop a method for detecting the occurrence of a Generalized Braess
paradox. We make the mathematical program of [9] tractable by relaxing its
constraints to obtain a convex mathematical programming problem that will
detect occurrences of the Generalized Braess Paradox. However, due to the
particular structure of the relaxed problem, first-order optimality conditions
may not hold for the optimal solution, thus rendering inapplicable any algo-
rithm based on standard first-order conditions. Therefore we adopt a special
method to solve the problem. The method first uses a sequence of linear
programs to identify which nonlinear constraints always hold as equalities,
and then whether a Generalized Braess Paradox exists. The number of linear
programs is no more than the number of links in the network and usually
much less. We apply the method to two small examples and to the well-
known Sioux Falls study network with 24 nodes, 76 links, and 528 origin-
destination pairs. A Generalized Braess Paradox is found to occur in the
Sioux Falls study network. The second of the small examples illustrates that
the first-order optimality conditions (Karush-Kuhn-Tucker conditions) can-
not be expected to hold for the optimal solution to the relaxed mathematical
program, even though it is a convex nonlinear programming problem.

2 Notation and Definition of the Equilibrium

Problem

We consider a transportation network with multiple origin-destination (o-d)
pairs. Depending on circumstances, demand (usually given as a trip table,
specifying for each origin-destination pair the volume per unit time of trav-
elers desiring to move between that origin and destination) may be either
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elastic or fixed. For the purposes of this paper we assume fixed demand, but
note that if demand is elastic, our results hold for the equilibrium demand
levels.

We make the following two assumptions. Neither is restrictive in that
if either fails to hold, existing methods in the literature [1] can be used to
reduce these cases to situations satisfying the assumptions.

1. Travel costs are additive, that is, the travel cost of a route is the sum
of the traversal costs of the links on the route.

2. The cost of traversing a link is the same for all travelers, and the cost
depends on the vector of total link flows, where the total flow on a
single link is the sum of the individual flows on the link between each
of the origin-destination pairs.

An equilibrium distribution of flows is a distribution of flows that meets
demands and satisfies Wardrop’s User-Equilibrium Principle, i.e., every used
path between an o-d pair must have the same cost, and all unused paths
between the same o-d pair must have cost greater than or equal to that of
the used paths. A Wardrop equilibrium corresponds, in a game-theoretic
framework, to a (noncooperative) Nash equilibrium. [12]

For a Wardrop equilibrium to be reached, one must assume that travelers
have perfect information about travel costs and act to minimize their indi-
vidual travel costs. Although this may seem to be a strong assumption, most
models used in traffic network analysis and planning assume that traffic will
be distributed according to a Wardrop equilibrium.

2.1 Notation

As is common in traffic flow theory, our model is built on a network structure
with travel costs on each link and known supplies and demands for each
node. Our notation accounts for the network structure, properties of links,
and properties of the travelers using the network.

Table 1 summarizes the notation we will use. We explain some aspects
of the notation.

The elements ai,k of the node-link incidence matrix A are defined by

ai,k =




1 if link k is directed out of node i
−1 if link k is directed into node i

0 otherwise.
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Table 1: Notation
k a link

t(k) the node that link k is directed out of
h(k) the node that link k is directed into

i a node
d a destination node
N the set of nodes in the network
A the set of links in the network
A the |N | × |A| node-link incidence matrix of the network
D the set of destination nodes
bd
i for i �= d, the demand for travel from node i to destination d

bd
d the negative of the sum of all demands for travel to destination d

Od the set of nodes with positive demand for travel to destination d
xd

k the amount of flow on link k destined for d
xd the vector of link flows destined for d
xk the total flow on link k
x the vector of total link flows

ud
i a price (or potential) for node i associated with destination d

ud the vector of node prices associated with destination d
zd

k a surplus quantity associated with link k and destination d
zd the vector of link surpluses associated with destination d

Fk(x) the traversal cost for link k of one unit of flow
F(x) the vector of link costs

x̄d
k the equilibrium solution flow on link k destined for d

x̄k the total flow on link k in the equilibrium solution
ūd

i the equilibrium cost of traveling from node i to destination d
z̄d

k the reduced cost Fk(x̄) − ūd
t(k) + ūd

h(k)
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In describing the flow on the network, we partition travelers according to
their destination. In our previous work, we partitioned travelers according to
both their origin and destination. The latter approach is conceptually easier;
however, from a computational point of view, the smaller number of classes
of travelers is desirable, and does not lose any generality. It is well known
(LeBlanc, [11]) that it is not necessary to discriminate between travelers
starting from different origins if they are bound for the same destination, or
equivalently, that it is not necessary to discriminate between travelers bound
for different destinations if they have all started at the same origin.

2.2 The Equilibrium Problem

The Wardrop equilibrium solution can be defined in several equivalent ways
(See [12, 14].), e.g., as a variational principle, as the solution of an optimiza-
tion problem, etc. The particular formulation chosen turns out to be critical
in developing a tractable characterization of the Generalized Braess Paradox.
For this purpose, we use a Lagrange multiplier definition. The equilibrium
problem can be expressed as seeking a solution to

(EQ)

F(x) − AT ud − zd = 0 ∀ d ∈ D (1)

Axd = bd ∀ d ∈ D (2)

x =
∑

d∈D xd (3)
∑

d∈D zd · xd = 0 (4)

xd ≥ 0 ∀ d ∈ D (5)

zd ≥ 0 ∀ d ∈ D (6)

ud
d = 0 ∀ d ∈ D (7)

Equation sets (1) and (4) state that on a link with positive flow destined
for destination d, the cost of travel on the link k, Fk(x), is equal to the price
difference, ud

i -u
d
j , corresponding to destination d, between the two end nodes,

i and j, of the link. If there is no flow directed towards d on link k, then
(4) allows zd

k to be positive and the cost of travel on link k may be greater
than or equal to the difference in prices. Equation set (2) requires that
flows directed toward d satisfy demand at origin and destination nodes and
conserve flow at other nodes. Equation (3) defines the total flow on a link
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to be the sum of the flows on that link headed to the different destinations.
There is always one node price ud

i for each d that is arbitrary. Equation
set (7) removes this ambiguity by defining the price at the destination nodes
to be zero. An equilibrium solution, denoted {(x̄d, ūd, z̄d)}d∈D, is a solution
to equations (1)-(7). The node price ūd

i of an equilibrium solution becomes
the cost of traveling from node i to destination d along links with x̄d

k > 0.

3 The Existence of Improved Flows

Given a Wardrop equilibrium set of flows, we wish to determine whether
there is another distribution of flows that makes some travelers better off
and no travelers worse off than in this equilibrium. To that end, we define
a nonlinear program which minimizes system cost subject to the constraint
that no traveler has cost greater than in the given equilibrium. The con-
straints are similar to those of the equilibrium problem, (EQ), except that
instead of requiring that the traversal cost on a used link equal the price
difference of its nodes, we allow the traversal cost of the link to be less than
or equal to the price difference of its nodes. In this way, the formulation
allows nonequilibrium flows.

For given A, F, demand vectors bd, and equilibrium travel costs ūd
s, de-

fine the following optimization problem originally introduced in [9], which
we henceforth call the Equilibrium Improvement Problem, (EIP). (In
[9], we referred to this as the Braess Optimization Problem.)

(EIP)

min x · F(x)

subject to F(x) − ATud − zd ≤ 0 ∀ d ∈ D (8)

Axd = bd ∀ d ∈ D (9)

x =
∑

d∈D xd (10)
∑

d∈D zd · xd = 0 (11)

xd ≥ 0 ∀ d ∈ D (12)

zd ≥ 0 ∀ d ∈ D (13)

ud
d = 0 ∀ d ∈ D (14)

ud
s ≤ ūd

s ∀ s ∈ Od (15)
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The constraints of (EIP) are very similar to the equilibrium problem
(EQ). The differences are:

1. As noted above, Constraint Set (8) is a set of inequalities instead of
equations. The inequalities allow nonequilibrium flows.

2. There is an additional constraint set, (15), which forces the travel cost
from any origin to destination to be less than or equal to that of the
equilibrium flow.

Under the reasonable assumptions that x is nonnegative and that F(x) is
convex and monotone ((y− x) · (F(y)−F(x)) ≥ 0 for all feasible x, y [10]),
the objective function of (EIP) is easily shown to be convex. Thus without
constraint (11), (EIP) would be a convex optimization problem.

Any feasible solution to (EIP) with objective function value less than that
of the equilibrium flow reduces the travel cost for some travelers, and due to
the last set of constraints, does not increase the travel cost for any travelers.
Thus if an equilibrium solution is not optimal for (EIP), a Generalized Braess
Paradox exists. That the converse also holds when the cost functions Fk are
nonnegative and nondecreasing in each of their arguments was shown in [9].
It follows that under these mild conditions on Fk, determining the existence of
flows that improve on a Wardrop Equilibrium is equivalent to testing (EIP)
to see if a Wardrop equilibrium is optimal. In the following sections we
will develop methods to test optimality of the Wardrop equilibrium. We first
establish that if there is a feasible solution to (EIP) for which some constraint
corresponding to a used link in set (8) holds strictly, then the equilibrium
solution is not optimal for (EIP) and a Generalized Braess Paradox exists.

Proposition 1 If there exists a feasible solution to (EIP) with the property
that for some link k and destination d,

xd
k > 0 and Fk(x) − ud

t(k) + ud
h(k) < 0,

then a Generalized Braess Paradox exists.

Proof: Suppose that the triples (xd,ud, zd) define a feasible solution to
(EIP) and there exists a link k∗ and destination d∗ such that

xd∗
k∗ > 0 and Fk∗(x) − ud∗

t(k∗) + ud∗
h(k∗) < 0.
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From constraint set (15), we know that no traveler is worse off than in equi-
librium. Since xd∗

k∗ > 0, there exists an origin s∗ which contributes flow to
link k∗ that is destined for d∗; more specifically, there is a path P of links
k joining s∗ to d∗ such that k∗ ∈ P and xd∗

k > 0 for all links k ∈ P . Since
xd∗

k > 0 for these links, zd∗
k = 0 on these links. Then for each of these links,

Constraint Set (8) gives

Fk(x) ≤ ud∗
t(k) − ud∗

h(k).

Our assumption of strict inequality gives

Fk∗(x) < ud∗
t(k∗) − ud∗

h(k∗).

Summing over k ∈ P , and using Constraint Sets (14) and (15) we have
∑
k∈P

Fk(x) < ud∗
s∗ ≤ ūd∗

s∗ ,

Thus we have travelers using path P to go from s∗ to t∗ with a lower cost
than in equilibrium.

4 A Computational Approach for Local Im-

provements

(EIP) provides a direct method of checking for the existence of a General-
ized Braess Paradox by solving an optimization problem. However, for even
moderately large networks (EIP) is difficult to solve because the complemen-
tarity constraint (11), which essentially defines for each destination d the
subnetwork of arcs that may be used by flows destined for d, is not convex.
Solving (EIP) implies the need to (implicitly or explicitly) enumerate all fea-
sible subnetworks of the network. Since for each destination, flows may use a
different subnetwork, solving (EIP) may require an extremely large enumera-
tion. We therefore treat a more tractable version of the problem for which we
can detect many instances of the Generalized Braess Paradox using a finite
sequence of linear programs.

In order to develop the more tractable test, we replace the troublesome
Constraint (11) with a more restrictive, but more tractable, condition. This
new problem will identify a local Generalized Braess Paradox, in the sense
that our search for an improved flow is restricted to using essentially the
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same set of links used in the Wardrop equilibrium solution. The existence of
a solution of the more restrictive problem that has a lower objective function
value than the equilibrium solution will guarantee the existence of a Gen-
eralized Braess Paradox. However, because the problem is more restrictive,
an improved solution using a different subnetwork may remain undetected.
Therefore even when the equilibrium solution is optimal for the modified
problem, a Generalized Braess Paradox may exist as shown by Example 1
of [9]. This limitation is shared by all tests for the Braess Paradox of which
we are aware ([7], [15]), in that none will detect a Braess Paradox that uses
flows on a subnetwork distinct from that of the equilibrium solution.

The Restricted Equilibrium Improvement Problem, (R-EIP), is

(R-EIP)

min x · F(x)

subject to F(x) − ATud − yz̄d ≤ 0 ∀ d ∈ D (16)

Axd = bd ∀ d ∈ D (17)

x =
∑

d∈D xd (18)
∑

d∈D z̄d · xd = 0 (19)

xd ≥ 0 ∀ d ∈ D (20)

ud
d = 0 ∀ d ∈ D (21)

ud
s ≤ ūd

s ∀ s ∈ Od (22)

This formulation entails two changes from (EIP). Constraint Set (8) has
been replaced with Constraint Set (16). Since the variable y can be set to
a very large number, when the equilibrium value z̄d

k > 0, the corresponding
constraint is vacuous just as is the case of Constraint Set (8) when zd

k > 0.
Constraint (11) has been replaced with Constraint (19), which requires that
xd

k = 0 whenever z̄d
k > 0. Thus any feasible solution to (R-EIP) has flow

going to destination d only on links k with z̄d
k = 0.

If F is convex and monotone, the objective function of (R-EIP) is convex
and (R-EIP) is a convex optimization problem. All constraints except those
involving F are linear. Our aim is to determine if the Wardrop equilibrium
solution {(x̄d, ūd, z̄d)}d∈D is optimal for (R-EIP). If a constraint qualification
held for the problem, one might use the first-order necessary (KKT) condi-
tions. However, as shown by Example 2 in Section 5, the KKT conditions for
(R-EIP) do not necessarily hold for the equilibrium solution, even when it
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is optimal. Therefore no constraint qualification can be assumed to hold for
the problem, and methods other than those based on the standard first-order
conditions must be used.

Convex programming problems for which no constraint qualification holds
have been studied extensively by Ben-Israel, Ben-Tal and Zlobec [5]. Using
their approach and an algorithm proposed by Kerzner [2], we first determine if
one or more nonlinear constraints hold as strict inequalities for some feasible
solution. If even one such (nonvacuous) constraint exists, Proposition 1 states
that there is a Generalized Braess Paradox. If it is determined that no such
constraint exists, we formulate a single linear program that searches for a
feasible direction of improvement. The existence of such a direction will
establish the existence of a Generalized Braess Paradox. If no such direction
exists, then the Wardrop equilibrium solution is optimal for (R-EIP).

Kerzner’s algorithm for finding the constraints that can be satisfied strictly
solves a sequence of linear programs. The number of linear programs that
must be solved is no more than the number of constraints and usually far
less. For example, model (R-EIP) for the Sioux Falls study network has 1655
nonlinear constraints, but requires the solution of only three linear programs
to determine which constraints can be satisfied strictly. The algorithm as
adapted for (R-EIP) is described in the appendix.

5 Computational Results

We consider three examples in detail. The first two use the five-link bridge
network studied by Braess [6] to illustrate his paradox, and the third is the
well-known Sioux Falls study network [3]. The first of the small examples is a
straightforward application of the method as described in the appendix. The
second example on the same network is a case in which there is no Generalized
Braess Paradox, that is, the equilibrium solution is optimal for (EIP), but
the Karush-Kuhn-Tucker conditions do not hold. The data, models and
numerical results for all three examples are given in [8].
Example 1

The network for Example 1 is shown in Figure 1. The demand for travel
between the origin s and the destination t is 6 units of flow. The cost functions
for the five links, the equilibrium solution, the system optimal solution, and
an improved solution illustrating a Generalized Braess Paradox are shown in
Table 2. There is no classic Braess Paradox for this problem because, as is
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Figure 1: Bridge Network
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Table 2: Data for Example 1, with a Generalized Braess Paradox but no
Classic Braess Paradox

Equilibrium
System
Optimal

(R-EIP)
Optimal

Equilibrium
without
Link 3

Link Cost Function Link Flows
1 1.4x1 4.000 3.630 3.464 2.914

2 5.4 +
√

4x2
2 + 9 2.000 2.370 2.536 3.086

3 2.4x3 2.000 1.010 1.011 0.000

4 7.8 +
√

4x2
4 + 9 2.000 2.620 2.453 2.914

5 2x5 4.000 3.380 3.547 3.086

Route Route Costs
1, 4 18.400 18.920 18.400 18.434

1, 3, 5 18.400 14.266 14.372
2, 5 18.400 17.770 18.387 18.434

Most Costly Used Route 18.400 18.920 18.400 18.434

System Cost 110.400 106.093 106.293 110.607
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Table 3: Data for Example 2, with No Generalized Braess Paradox

Link Cost Function Equilibrium
System
Optimal

1 1.6x1 4.00 3.52

2 5.4 +
√

4x2
2 + 9 2.00 2.48

3 2x3 2.00 1.04

4 5.4 +
√

4x2
4 + 9 2.00 2.48

5 1.6x5 4.00 3.52

Highest Used Route Cost 16.80 17.99
System Cost 100.8 97.3

also shown in Table 2, eliminating link three does not result in an improved
equilibrium travel cost from node 1 to node 4. Because the problem is small,
it is a simple matter to solve (EIP) or (R-EIP) directly to find a Generalized
Braess Paradox if one exists. The (R-EIP) optimal solution shown in Table 2
reduces the travel cost for travelers using the route consisting of links 1, 3, and
5 by 22 percent, and does not increase the cost for any other travelers, thus
establishing the existence of a Generalized Braess Paradox. In this particular
example, any convex optimizer can be counted on to give a correct solution
to (R-EIP) because the nonlinear constraints can be satisfied strictly for
some feasible solution. The details of our general approach as applied to this
example are given in the appendix.
Example 2

The network for Example 2 is the same simple network as for Example
1, with the same demand for travel. The cost structure has been changed to
eliminate the occurrence of a Generalized Braess Paradox. The equilibrium
solution is optimal for (R-EIP). However, the first order optimality conditions
do not hold at the equilibrium solution. The link costs, the equilibrium
solution and the system-optimal solution are shown in Table 3.

Applying the algorithm described in the appendix to (R-EIP), we find at
the first iteration that both of the nonlinear constraints (those in (16) corre-
sponding to links 2 and 4) must hold with equality for all feasible solutions of
(R-EIP). We then conclude (see the appendix) that the flows on links 2 and
4 are constant for all feasible solutions of (R-EIP). Due to the simple struc-
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ture of this example, it is immediately apparent that if there are no feasible
changes to the flows on links 2 and 4, there are no feasible changes to the
flows on the other three links. Thus we know that the equilibrium solution
is optimal for (R-EIP) and there is no local Generalized Braess Paradox.

If the example were not so simple, we would proceed by replacing the
nonlinear constraints in (R-EIP) by linear constraints defined by replacing
the arguments of the strictly convex cost functions by their constant values.
The result is a nonlinear program with convex objective function and linear
constraints. For this program, we can determine optimality of the equilib-
rium solution simply by checking for the existence of a feasible direction of
decrease of the objective function. This requires only the solution of a single
linear program. We would find that there is no such feasible direction of im-
provement, and we would conclude that the equilibrium solution is optimal
for (R-EIP) and there is no local Generalized Braess Paradox. Even though
the equilibrium solution is optimal for (R-EIP), the Karush-Kuhn-Tucker
conditions do not hold at the equilibrium solution.
Example 3

The Sioux Falls study network is often used as a test network for trans-
portation models. It consists of 24 nodes, 76 one-way links and 528 origin-
destination pairs. Thus, most of the nodes are both origins and destina-
tions. The network is shown in Figure 2. The network structure, the trip
table specifying required flows, and an accurate equilibrium solution can be
found at [3]. The linear programs described in the appendix were formu-
lated using the LINGO modeling language (Details are available at [8]). For
Bar-Gera’s equilibrium solution [3], the linear programs have approximately
2500 constraints and 4000 variables. The cost function used is the standard
fourth-power polynomial used in traffic analysis and is also available at [3].

The standard cost function is meant to be essentially constant in the low-
volume free-flow range and to then increase rapidly for flows exceeding a given
capacity level. For equilibrium flows that are under half of the given capacity
level, we replaced the fourth degree polynomial by a constant function. For
travelers on these links, a small change in flows on these links will have a
negligible effect on cost. The fact that several of the equilibrium link flows
were in this free-flow range turned out to be critical to the detection of the
Generalized Braess Paradox. After finding the optimal changes for (R-EIP),
we recalculated link costs using the original quartic functions. We found that
while reducing some travelers costs by 33%, no link costs increased by more
than 0.25%. These increases occur on the arcs that were set to a constant
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Figure 2: Sioux Falls Network
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cost, and the flows on these links were still under 50% of capacity.
After solving the first LP as described in the appendix (see also [8]), we

found that 72 of the 76 (one-way) links must have constant cost for all feasible
flows. Solving a second LP added two links to the set with constant cost.
After solving a third LP, we found that nonlinear constraints corresponding
to the last two links [5-6] and [6-5] can be satisfied strictly. All three of the
LP’s were solved in seconds on a desktop Windows machine using LINGO.
The dual prices from the third LP give the changes in destination-based flows
that will make links [5-6] and [6-5] have costs that are lower than the price
differentials. The links that have changes in flow, and the directions of these
changes, are shown in Figure 3. By Proposition 1, these changes demonstrate
the occurrence of a Generalized Braess Paradox for the Sioux Falls study
network. After determining that a Generalized Braess Paradox exists and
that all costs were constant except those corresponding to links [5-6] and [6-
5], we found the optimal solution to (R-EIP). The optimal solution involved
flow changes to three additional arcs and several additional destinations.

6 Conclusions

The method presented in this paper identifies situations in which, when com-
pared with the Wardrop equilibrium, alternate flows exist that reduce cost
for some travelers without increasing cost for any other travelers. The net-
work presented by Braess [6] is an example of such a situation. That the phe-
nomenon can occur in much more complex (nonlinear cost structure, multiple
origins and destinations, etc.) situations is shown by the small examples in
[9] and, in this paper, by the Sioux Falls study network. Models of urban
areas can easily involve thousands of links and origin-destination pairs. Be-
cause the method presented involves only the solution of linear programs,
we expect that it can be directly applied to large urban networks. When
improved flows are found, congestion and societal costs can be reduced, but
individual travelers face negligible increases in costs. This is in contrast to
system-optimal flows where typically some travelers face significant increases
in cost.
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Figure 3: Improving Changes in Flow for Sioux Falls Network
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7 Appendix: Finding the Set of Always Bind-

ing Constraints

In this appendix we apply Kerzner’s algorithm [2] to (R-EIP). Because (R-
EIP) has many sets of constraints and variables, the details become com-
plicated. Therefore we first describe a version of the algorithm for a more
general convex program.

We wish to determine whether a vector x∗ is optimal for the following
convex programming problem.

(CP)

min f(x)

subject to gi(x) ≤ 0 i = 1, 2, ...m

Ax = b

where f and the gi are differentiable and faithfully convex [13], and A is a
matrix and b a vector of appropriate dimensions. We also assume, without
loss of generality, that at x∗ all of the nonlinear constraints, gi, are binding.
Any constraints that are not binding at x∗ may be ignored for our current
purposes.

Let P= be the set of always binding nonlinear constraints, that is, P= is
the set of nonlinear constraints which are binding for all feasible solutions of
(CP). By definition all constraints not in the set P= can be satisfied strictly
for some feasible solution, and by taking a convex combination of such feasible
solutions, we may obtain a single feasible solution for which all constraints
not in P= hold strictly.

As will be shown below, if the set P= is known, the nonlinear constraints
in P= may be replaced by linear constraints, and the remaining nonlinear
constraints (those not in P=) will hold strictly for some feasible solution.
Thus the Slater constraint qualification [4] will hold, and it will be a simple
matter to check the optimality of x∗ by solving a single linear program.
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Kerzner’s algorithm for finding the set P= of (R-EIP) incrementally builds
up the set of constraints known to be in P=. It starts by assuming P= is
empty, and at each iteration finds at least one more constraint (often many
more) that is a member of P=, or determines that P= is already completely
specified, in which case the algorithm terminates.

To start the algorithm, we check for the existence of a feasible direction
d so that all of the nonlinear constraints evaluated at x∗ + td for small t > 0
will hold strictly, that is, we look for a d that satisfies

∇gi(x
∗)Td ≤ −1 i = 1, 2, . . . m

Ad = 0

If such a d exists then P= is empty and all of the nonlinear constraints
can be satisfied strictly and the algorithm terminates. If no such d exists,
then the linear program
(FD-P)

max 0 · d
subject to ∇gi(x

∗)T d ≤ −1 i = 1, 2, . . . m

Ad = 0

has no feasible solution and by the duality theorem of linear programming
its dual
(FD-D)

min −∑
αi

subject to
∑∇gi(x

∗)αi + AT β = 0 (23)

α ≥ 0,

must be either infeasible or unbounded. However, 0 is a feasible solution
of (FD-D), and thus if (FD-P) has no feasible solution, (FD-D) must be
unbounded. In that case some feasible solution to (FD-D) has at least one
positive component in α.

Let α be a feasible solution of (FD-D) with at least one component, for
example the first component, α1, positive. Suppose that for some feasible
solution of (CP), the first nonlinear constraint holds strictly. Then there
must exist a feasible direction d of (CP) satisfying
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dT∇g1 < 0

dT∇gi ≤ 0 i �= 1

dTAT = 0

Now “left” multiply the constraint (23) of (FD-D) by this feasible direc-
tion vector d. The first summand of the left hand side consists of the posi-
tive α1 times the (negative) inner product dT∇g1. Thus the first summand
is negative. Similarly all others are nonpositive. Noting that dTAT β = 0,
we see that the left hand side is negative and the right hand side is zero - a
contradiction. Therefore we conclude that whenever an αi is positive the cor-
responding dT∇gi cannot be negative. Hence the corresponding constraints
of (CP) can never hold strictly and are members of P=. Thus if we solve
(FD-D), and find one or more positive αi, we know that the corresponding
constraints are members of P=.

The next step is to replace nonlinear constraints known to be members
of P= with linear constraints. The assumption of faithful convexity means
that gi(x) in P= can be broken into linear and strictly convex parts. Since
by definition a constraint belonging in P= is constant on the feasible set,
the strictly convex part of the constraint and the linear part must each be
constant on the feasible set. It then follows that the argument of the strictly
convex part of the function must be constant on the feasible set. Therefore
we can replace the nonlinear constraint by linear constraints which require
i) that the argument of the strictly convex part of the constraint equal its
unique value on the feasible set, and ii) that the linear part of the constraint
equal its unique value on the feasible set. The result is that we can write
(CP) as a convex program with at least one fewer nonlinear constraint.

We repeatedly apply the above method until all constraints are deter-
mined to be in P= and have been replaced by linear constraints, or the
only solutions of (FD-D) have α = 0. When the only solutions of (FD-D)
have α = 0, all of the remaining nonlinear constraints hold strictly for some
feasible solution of (CP), which by Proposition 1 means that a Generalized
Braess Paradox exists. If all nonlinear constraints are in P=, we will have
reduced the (CP) to a problem with a convex objective function and linear
constraints. The optimality of x∗ may then be determined by solving a single
linear program, e.g., by seeking a feasible direction of descent of the objective
function.
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As an illustration we apply the above method to Example 1 of Section 5.
The network is shown in Figure 1, and the link cost functions are given in
Table 2. The equilibrium solution for a total flow of 6 units is shown in Table
2, as are the system optimal flows and improved flows to be determined by
the above method.

First formulate the convex program (R-EIP) using the data from Figure
2. Because the equilibrium solution has flow on all links, z is equal to zero
and may be omitted from the formulation. As there is only one destination,
we omit the superscripts from the formulation.

(R-EIP)

min1.4x2
1 + 5.4x2 + x2

√
4x2

2 + 9 + 2.4x2
3 + 7.8x4 + x4

√
4x2

4 + 9 + 2x2
5

st 1.4x1 + u2 − us ≤ 0

5.4 +
√

4x2
2 + 9 + u3 − us ≤ 0

2.4x3 + u3 − u2 ≤ 0

7.8 +
√

4x2
4 + 9 + ut − u2 ≤ 0

2x5 + ut − u3 ≤ 0
x1 + x2 = 6

−x1 + x3 + x4 = 0
−x2 − x3 + x5 = 0

−x4 − x5 = −6
xj ≥ 0 j = 1, 2, ..5
ut = 0

us ≤ 18.4

Next we formulate the primal feasible direction problem (FD-P) which
searches for a direction, d, that will make the nonlinear constraints hold
strictly.

(FD-P)

1.4dx1 + du2 − dus ≤ 0
1.6dx2 + du3 − dus ≤ −1
2.4dx3 + du3 − du2 ≤ 0

1.6dx4 + dut − dus ≤ −1
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2dx5 + dut − du3 ≤ 0
dx1 + dx2 = 0

−dx1 + dx3 + dx4 = 0
−dx2 − dx3 + dx5 = 0

−dx4 − dx5 = 0
dut = 0
dus ≤ 0

The existence of a solution to this set of inequalities is equivalent to the
Slater Condition, which requires that the nonlinear constraints be satisfied
strictly at some feasible point. Although the Slater Condition will turn out
to hold for this problem, in general it cannot be expected to hold, and, in
fact, it does not hold in Examples 2 and 3. We first convert the above set
of inequalities into a linear program by forming an objective function with
cost coefficients all equal to zero. Then form the dual of the linear program
which we denote (FD-D). We denote the dual variables corresponding to the
nonlinear constraints of (R-EIP) (second and fourth constraints) by αj for
j = 2, 4 and those corresponding to the linear constraints by βj for all other
values of j.

(FD-D)

max α2 + α4

st 1.4β1 + β6 − β7 = 0

1.6α2 + β6 − β8 = 0

2.4β3 + β7 − β8 = 0

1.6α4 + β7 − β9 = 0

2β5 + β8 − β9 = 0

β1 + α2 + β11 = 0

−β1 + β3 + α4 = 0

−α2 − β3 + β5 = 0

−α4 − β5 + β10 = 0

α2, α4, β1, β3, β5, β11 ≥ 0

As pointed out above, (FD-D) is either unbounded or it has an optimal
solution with optimal objective function value equal to zero. We find that
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the optimal solution of (FD-D) has α2 = 0 and α4 = 0. Therefore, we know
that (FD-P) has an optimal solution which is a feasible direction leading to
a point that satisfies both nonlinear constraints of (R-EIP) strictly. From
Proposition 1 it follows that a Generalized Braess Paradox exists.

The optimal solution to (FD-P), that is, the direction vector leading to an
interior point, may be obtained from the dual prices of (FD-D). An improved
flow for the original network, demonstrating the Generalized Braess Paradox,
may then be obtained by moving in this direction. The optimal solution
to (R-EIP) is shown in Table 2. It is very close to the solution obtained
by moving in the direction given by the solution to (FD-P). This solution
reduces travel cost by 22% for travelers moving along the path defined by
links 1, 3, and 5, and does not increase travel cost for any travelers when
compared with the equilibrium solution.

We end this appendix with general formulations of the (R-EIP), (FD-P)
and (FD-D) for Kerzner’s algorithm. We make one change of notation for the
general formulation. In this appendix we have used d to indicate a direction
vector in the feasible set as in common in optimization theory. However,
in our general formulation of the equilibrium problem (EQ) and equilibrium
improvement problem (EIP), d is used to index the destination nodes of the
network. We return to this use of d, and now represent a component of a
direction vector by putting an arrow over the variable corresponding to that
component. Thus the component of a feasible direction corresponding to x1

is denoted �x1.
Under the assumption that Fk(x) = fk(xk) the individual cost constraints

of (R-EIP) have the form

fk(xk) − ud
t(k) + ud

h(k) − z̄d
ky ≤ 0.

for each link k and destination d. Note that for each link, that is for fixed k,
the constraints corresponding to the various destinations d all have the same
cost function fk. For the constraints with strictly convex cost functions, if it is
known that for some destination d, the constraint indexed by (k, d) belongs to
P=, the unique feasible value of fk will be known, and the nonlinear function
can be replaced by a constant in the cost constraints of all destinations
involving that link. Thus due to the special structure of (EIP) and (R-EIP),
at each iteration of Kerzner’s algorithm we are able to remove many more
nonlinear constraints than in the general case.

To make the preceding precise, first define L to be the set of arcs k for
which fk is affine. Then define, P ⊆ A−L to be the set of links with nonlinear
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costs such that it is known that for some destination, the corresponding cost
constraint belongs to P=. At each iteration of the algorithm more links will
be included in P until it is as large as possible.

Because the constraints of (R-EIP) do not allow flow on links with z̄d
k > 0

for all d ∈ D, assume that we have deleted all such links from the network. To
apply the algorithm in the general case, we first rewrite (R-EIP) to explicitly
separate the cost constraints into three groups, namely those with affine cost
functions, that is, k ∈ L, those with nonlinear cost functions that are known
to have a single value for all feasible solutions, that is, k ∈ P , and the
remaining constraints. Then (R-EIP) can be reformulated as

min x · F(x)

subject to fk(x̄k) − ud
t(k) + ud

h(k) − z̄d
ky ≤ 0 if k ∈ P , ∀ d ∈ D

fk(xk) − ud
t(k) + ud

h(k) − z̄d
ky ≤ 0 if k ∈ L, ∀ d ∈ D

fk(xk) − ud
t(k) + ud

h(k) − z̄d
ky ≤ 0 if k �∈ P ∪ L, ∀ d ∈ D

Axd = bd ∀ d ∈ D
−∑

d∈D xd
k + x̄k = 0 if k ∈ P

−∑
d∈D xd

k + xk = 0 if k �∈ P
∑

d∈D z̄d · xd = 0

xd ≥ 0 ∀ d ∈ D
ud

d = 0 ∀ d ∈ D
ud

s ≤ ūd
s ∀ s ∈ Od

The linear program that searches for an interior direction is

(FD-P)

min 0

subject to �ud
t(k) − �ud

h(k) + z̄d
k�y ≥ 0 if k ∈ P

−∂fk(x̄k)
∂xk

�xk + �ud
t(k) − �ud

h(k) + z̄d
k�y ≥ 0 if k ∈ L (24)

−∂fk(x̄k)
∂xk

�xk + �ud
t(k) − �ud

h(k) + z̄d
k�y ≥ 1 if k �∈ P ∪ L

A�xd = 0 ∀ d ∈ D (25)

−∑
d∈D �xd

k = 0 if k ∈ P
�xk − ∑

d∈D �xd
k = 0 if k �∈ P (26)
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−∑
d∈D z̄d · �xd = 0 (27)

�xd + �y x̄d ≥ 0 ∀ d ∈ D (28)

�ud
d = 0 ∀ d ∈ D

−�ud
s ≥ 0 ∀ s ∈ Od (29)

�ud
i unrestricted in sign for i �∈ Od, i �= t

As discussed above, we will solve the dual (FD-D) of the direction finding
linear program (FD-P). The dual variables are αd, βd, φ, ε, γd, δd, corre-
sponding to constraint sets (24), (25), (26), (27), (28), (29), respectively.
The dual linear program is

(FD-D)

max
∑

k �∈P∪L
∑

d∈D αd
k

subject to −φ + ATβd + γd − εz̄d = 0 ∀ d ∈ D
Aαd − δd = 0 ∀ d ∈ D

φk − ∂fk(x̄k)
∂xk

∑
d∈D αd

k = 0 if k �∈ P
∑

d∈D
[
z̄d · αd + x̄d · γd

]
= 0

αd ≥ 0 ∀ d ∈ D
γd ≥ 0 ∀ d ∈ D

δd
d unrestricted in sign ∀ d ∈ D

δd
s ≥ 0 ∀ s ∈ Od

δd
i = 0 for i �∈ Od, i �= d.

Each αd
k found to be positive implies that the corresponding constraint is

a member of P= and that the corresponding link k is a member of P . The
value of these nonlinear cost functions on the feasible set is therefore known
and they are replaced in the formulation by their constant values. Thus at
each iteration of Kerzner’s algorithm we will eliminate all of the nonlinear
constraints corresponding to at least one link and frequently to many links.
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